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Abstract

Chagas disease can cause severe cardiac
complications, yet early detection is often limited by a
lack of access to diagnostic tools like 12-lead
electrocardiograms (ECG). This study investigates using
features from short, single-lead ECGs—increasingly
available via consumer devices—for detection. We
developed machine learning models using ECGs from the
Sami-Trop (N=362) and PT-XL (N=385) datasets.

A Convolutional Neural Network (CNN) model
achieved promising performance on cross validation,
with an Area Under the Curve (AUC) of 0.93. A support
vector machine (SVM) trained on RR intervals achieved
an AUC of 0.63 on the same. The models achieved, mean
challenge scores on the test set of 0.056 and 0.078
respectively. In comparison, a support vector machine
(SVM) trained on engineered RR interval features
achieved a cross-validation AUC of 0.63. On the hidden
test set, these models achieved mean challenge scores of
0.056 and 0.078 respectively.

These results highlight the varying performance of
different modeling approaches and suggest that while
deep learning models can be effective, feature-based
methods provide a simpler baseline for this detection
task.

1. Introduction

This research was undertaken as part of the PhysioNet
challenge for CinC 2025 [1,2,3]. Chagas disease is
fundamentally a disease of poverty inextricably linked to
the social and environmental conditions that facilitate its
transmission. Consequently, a low-cost approach to
diagnosis and monitoring is highly desirable. In Brazil,
the burden of Chagas disease is not uniformly distributed
but presents with distinct hotspots. Furthermore, acute
outbreaks are also a concern, necessitating a portable
diagnostic solution.

Chagas cardiomyopathy, a significant consequence of
the disease, frequently leads to cardiomegaly and is
known to be arrhythmogenic. This suggests that detection
methods for these cardiac issues could also be applicable
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to Chagas disease. In recent years, advancements in
single-lead ECG devices have significantly improved
their capability to detect arrhythmias. Alongside this,
there have been notable developments in remote
photoplethysmography (PPG), which involves capturing
PPG signals from video data. This presents a highly
portable solution with the potential for algorithms that
utilise R-R intervals, offering a non-invasive and
accessible approach.

The primary objective of this paper was to consider
algorithms that can ultimately be deployed in the most
cost-effective and portable manner possible, aligning with
the urgent need for accessible healthcare solutions in
regions affected by Chagas disease. By exploring these
technological advancements, we aim to contribute to the
development of practical tools that can address the
diagnostic and monitoring challenges posed by this
debilitating condition, particularly in resource-limited
settings.

2. Methods

2.1. Overview

My research aimed to develop a model that primarily
relies on lead I ECG data although an alternative
approach utilising focusing on rhythm features was also
explored. Due to the inherent limitations of information
available in lead I ECG, particularly concerning the
rhythm data that can be definitively extracted, my
investigation was structured in two distinct phases.
Initially I conducted an in-depth analysis of rhythm
features and their correlation with Chagas disease,
followed by the subsequent creation and evaluation of the
predictive model.

As early detection of Chagas disease is crucial, an
additional analysis involving only ECGs with no detected
abnormalities was also carried out.

2.2. Datasets

This study utilised several public ECG databases. The
primary Chagas-positive cohort was sourced from the
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Sami-Trop dataset [4]. The primary control (Chagas-
negative) cohort was taken from the PTB-XL dataset [5].

For the CNN model development, 803 records from
Sami-Trop and 803 from PTB-XL were used, with all
recordings chosen being longer or equal to 7 seconds in
length. Longer records were truncated to a uniform 7-
second length.

For the feature-based model development, 362 records
from Sami-Trop and 362 from PTB-XL were used, with
all recordings chosen being longer or equal to 10 seconds
in length. Longer records were truncated to a uniform 10-
second length. Additionally, any records where less than
8 RR intervals were detected were excluded from
training.

For local evaluation, records from the CODE-15
dataset [6] were used using the respective length
parameters for each model approach.

A critical sub-analysis on "normal" ECGs was
performed to test for early-stage detection capabilities.
For this purpose, three distinct datasets were created. The
first, SET A, was a strictly controlled comparison
between 62 "normal" ECGs from Sami-Trop and 66
ECGs from PTB-XL explicitly annotated as '"sinus
rhythm normal ekg" to isolate subtle Chagas-related
changes. The second, SET B, was a less strict
comparison, matching the 62 "normal" Sami-Trop records
against 63 records from PTB-XL with the general code
"NORM," which could include minor variations like sinus
tachycardia or bradycardia. The third, SET C, served as
an external validation set, using 78 "normal" ECGs with a
1:1 ratio of Chagas to control from the CODE-15 dataset.

For preprocessing, the raw single-lead ECG signal was
processed to identify R-peaks using the well-established
Pan-Tompkins algorithm. The resulting sequence of RR
intervals was then filtered to remove outliers and retain
only normal-to-normal sinus beat intervals for robust
feature calculation.

In the case of inference on the CNN model, records
shorter and 7 seconds were padded, while longer records
were truncated. For the feature models, any record with
less than 6 detected RR intervals was deemed negative by
default.

2.3. Rhythm Analysis

A comprehensive set of 31 features was engineered
from the preprocessed 10-second ECG signals to capture
a wide range of cardiac dynamics. These were divided
into two main categories. The first category consisted of
24 RR interval features focused on quantifying heart rate
variability (HRV). These included standard time-domain
statistical measures such as the mean and median of RR
intervals, heart rate (HR), SDNN, RMSSD, pNN20, and
pNNS50. Geometric features were also derived from the
Poincaré plot, including the standard deviations along the
short (SD1) and long (SD2) axes and their ratio,

alongside histogram-based features like the Triangular
Index (TI) and the Baevsky Stress Index (BSI). Finally,
non-linear measures of signal complexity were computed
to capture subtle irregularities, including the correlation
dimension, RR entropy (RREN), SD entropy, RR wavelet
entropy (RRWEN), and SD wavelet entropy. The second
category comprised 7 QRS amplitude features to capture
morphological changes in the QRS complex. These
included the mean, median, standard deviation, and
entropy of the QRS peak amplitudes, as well as the
minimum, maximum, and range (gap) of amplitudes
within the 10-second window.

2.4. Models

Three distinct modeling strategies were pursued to find
an optimal balance between performance and
generalizability.

The first was a lightweight 1D Convolutional Neural
Network (CNN) trained on the raw ECG waveform as an
end-to-end model. This model was trained using the
Adam optimizer with a cosine learning rate scheduler
with soft restarts, an initial learning rate of le-2, and a
final learning rate of 1e-5, for a maximum of 140 epochs.

The second and third strategies involved traditional
machine learning classifiers trained on the engineered
features. For both feature-based models, the input features
were first standardised to have a zero mean and a
standard deviation of one.

The RR Model was a K-Nearest Neighbors (KNN)
classifier with 100 neighbors considered, using only the
R-R interval features.

The third and most comprehensive approach, the
RR+AMP Model, was a random subspace ensemble
model composed of discriminant analysis learners; this
model used both the R-R interval and the ECG QRS
complex amplitude features. This ensemble used a
subspace size of 16 predictors and was trained for 30
learning cycles.

2.4. Evaluation

The evaluation protocol was multi-faceted. Initial
model development and hyperparameter tuning were
performed using a 5-fold cross-validation scheme on the
primary training data. To assess generalization to unseen
data, the trained models were then evaluated on the
external CODE-15 dataset. Finally, performance was
reported on a hidden test set as part of the official
PhysioNet Challenge, providing an unbiased assessment
of the final models. The statistical significance of each
engineered feature was independently assessed using the
Kruskal-Wallis test using the local training and evaluation
sets. Models trained for the additional analysis on
“normal” ECGs were only evaluated using cross-
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validation.
3. Results

3.1. Model Performance

The performance of the three models is summarised in
Table 1. The CNN model achieved a high cross-
validation AUC of 0.9359 but performed poorly on local
validation set of CODE-15 with an AUC of 0.3557,
indicating significant overfitting. In contrast, the feature-
based models generalised better. The RR+AMP model
yielded the highest cross-validation AUC of 0.7220,
demonstrating a modest improvement over the RR-only
model which had a cross-validation AUC of 0.6827.
When validated locally using the CODE-15 set, the
RR+AMP model had an AUC of 0.6867 and the RR
model an AUC of 0.6900, showing a consistent
performance across different datasets.

Table 1. Results of each model on local testing.

Model Training data CODE-15
cross-validation validation
AUC

CNN 0.9359 0.3557

RR 0.6827 0.6900

RR+AMP 0.7220 0.6867

For the testing on the hidden tsets, the CNN model was
submitted during the main phase of the challenge, while
the feature models were both submitted for the Hackathon
during the conference. As a result, which was feature was
eventually evaluated is unknown. The CNN model
achieved a mean challenge score of 0.056 and the feature
model a mean challenge score of 0.078.

Table 2. Results of each model on the hidden sets.

Model Hidden Hidden test
validation mean challenge
challenge score score

CNN 0.101 0.056

Feature 0.062 0.078

3.2.  Analysis on Normal ECGs

The analysis restricted to clinically "normal" ECGs
also identified highly significant features, suggesting that
subtle autonomic dysregulation is detectable even without
overt abnormalities. For SET A (strictly normal
controls), SDNN(p=3.46x10—8)  and Poincaré  long
diagonal st.d. (p=3.85x10—8) were the most powerful

discriminators.

A simple model trained on SET A achieved an AUC of
0.8119, with 80.6% specificity and 74.2% sensitivity,
highlighting a strong potential for early detection.
Performance decreased on SET B (AUC 0.6897) and SET
C (AUC 0.6127), where control groups were less
stringently defined or sourced from a different dataset,
respectively.

Table 3. Normal ECG model evaluation

Dataset Training data
cross-validation
AUC

SET A 0.8119

SET B 0.6897

SET C 0.6127

4 Discussion

This study demonstrates the potential of using machine
learning models on features from short, single-lead ECGs
to detect Chagas disease. Our findings indicate that
feature-engineered models, particularly the RR+AMP
model, provide a more robust and generalizable
performance compared to our end-to-end CNN deep
learning approach. Biases in the data and the lack of data
cleansing, could be the cause for the poor performance of
the CNN model on the hidden sets. For the feature
models, the fact that they cannot process records with too
few RR intervals, might have contributed to the model’s
low performance.

The most significant finding is the ability to
discriminate between Chagas and healthy individuals
even when their ECGs are classified as "normal". The
high performance of a model on SET A (AUC 0.8119)
suggests that subtle disruptions in cardiac autonomic
control, captured by HRV metrics like SDNN and
Poincaré plot analysis, precede the development of
clinically apparent ECG abnormalities. This aligns with
the known pathophysiology of Chagas disease, where
autonomic nervous system damage is an early
manifestation. This capability is crucial for early-stage
screening, allowing for timely intervention before
irreversible cardiac damage occurs. A limitation of this
approach is that such a model might confuse other
diseases that affect HRV for Chagas disease.

The primary limitation of this work is the use of short
ECG recordings, which is suboptimal for stable HRV
feature calculation. Standard HRV analysis typically
requires recordings of at least 30 seconds. The instability
of features derived from short segments may have
constrained the overall model performance.

In conclusion, this research provides strong evidence
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that accessible, single-lead ECG analysis can be a
powerful tool for Chagas disease screening. By
leveraging computational analysis of RR intervals and
QRS amplitude, it is possible to detect subtle pathological
signs that may be missed by routine interpretation. As
technology for heart rhythm monitoring becomes
ubiquitous through smartphones and wearables, this
approach has the potential to significantly improve access
to care and enable large-scale screening efforts in at-risk
populations.

Future work should focus on validating these methods
on longer recordings (e.g., 20-30 seconds) to enhance
feature stability and further improve model accuracy.
Additionally, an important investigation will be to
compare the ability of these features to discriminate
Chagas disease with no ECG findings from other diseases
that may also affect the autonomic nervous system and
thus HRV.
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