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Abstract 

Chagas disease can cause severe cardiac 
complications, yet early detection is often limited by a 
lack of access to diagnostic tools like 12-lead 
electrocardiograms (ECG). This study investigates using 
features from short, single-lead ECGs—increasingly 
available via consumer devices—for detection. We 
developed machine learning models using ECGs from the 
Sami-Trop (N=362) and PT-XL (N=385) datasets.  

A Convolutional Neural Network (CNN) model 
achieved promising performance on cross validation, 
with an Area Under the Curve (AUC) of 0.93. A support 
vector machine (SVM) trained on RR intervals achieved 
an AUC of 0.63 on the same. The models achieved, mean 
challenge scores on the test set of 0.056 and 0.078 
respectively. In comparison, a support vector machine 
(SVM) trained on engineered RR interval features 
achieved a cross-validation AUC of 0.63. On the hidden 
test set, these models achieved mean challenge scores of 
0.056 and 0.078 respectively.  

These results highlight the varying performance of 
different modeling approaches and suggest that while 
deep learning models can be effective, feature-based 
methods provide a simpler baseline for this detection 
task. 
 
1. Introduction 

This research was undertaken as part of the PhysioNet 
challenge for CinC 2025 [1,2,3]. Chagas disease is 
fundamentally a disease of poverty inextricably linked to 
the social and environmental conditions that facilitate its 
transmission. Consequently, a low-cost approach to 
diagnosis and monitoring is highly desirable. In Brazil, 
the burden of Chagas disease is not uniformly distributed 
but presents with distinct hotspots. Furthermore, acute 
outbreaks are also a concern, necessitating a portable 
diagnostic solution. 

Chagas cardiomyopathy, a significant consequence of 
the disease, frequently leads to cardiomegaly and is 
known to be arrhythmogenic. This suggests that detection 
methods for these cardiac issues could also be applicable 

to Chagas disease. In recent years, advancements in 
single-lead ECG devices have significantly improved 
their capability to detect arrhythmias. Alongside this, 
there have been notable developments in remote 
photoplethysmography (PPG), which involves capturing 
PPG signals from video data. This presents a highly 
portable solution with the potential for algorithms that 
utilise R-R intervals, offering a non-invasive and 
accessible approach. 

The primary objective of this paper was to consider 
algorithms that can ultimately be deployed in the most 
cost-effective and portable manner possible, aligning with 
the urgent need for accessible healthcare solutions in 
regions affected by Chagas disease. By exploring these 
technological advancements, we aim to contribute to the 
development of practical tools that can address the 
diagnostic and monitoring challenges posed by this 
debilitating condition, particularly in resource-limited 
settings. 
 
2. Methods 

2.1. Overview 

My research aimed to develop a model that primarily 
relies on lead I ECG data although an alternative 
approach utilising focusing on rhythm features was also 
explored. Due to the inherent limitations of information 
available in lead I ECG, particularly concerning the 
rhythm data that can be definitively extracted, my 
investigation was structured in two distinct phases. 
Initially I conducted an in-depth analysis of rhythm 
features and their correlation with Chagas disease, 
followed by the subsequent creation and evaluation of the 
predictive model. 

As early detection of Chagas disease is crucial, an 
additional analysis involving only ECGs with no detected 
abnormalities was also carried out. 

 
2.2. Datasets 

    This study utilised several public ECG databases. The 
primary Chagas-positive cohort was sourced from the 
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Sami-Trop dataset [4]. The primary control (Chagas-
negative) cohort was taken from the PTB-XL dataset [5]. 

For the CNN model development, 803 records from 
Sami-Trop and 803 from PTB-XL were used, with all 
recordings chosen being longer or equal to 7 seconds in 
length. Longer records were truncated to a uniform 7-
second length. 

For the feature-based model development, 362 records 
from Sami-Trop and 362 from PTB-XL were used, with 
all recordings chosen being longer or equal to 10 seconds 
in length. Longer records were truncated to a uniform 10-
second length. Additionally, any records where less than 
8 RR intervals were detected were excluded from 
training. 

For local evaluation, records from the CODE-15 
dataset [6] were used using the respective length 
parameters for each model approach. 

A critical sub-analysis on "normal" ECGs was 
performed to test for early-stage detection capabilities. 
For this purpose, three distinct datasets were created. The 
first, SET A, was a strictly controlled comparison 
between 62 "normal" ECGs from Sami-Trop and 66 
ECGs from PTB-XL explicitly annotated as "sinus 
rhythm normal ekg" to isolate subtle Chagas-related 
changes. The second, SET B, was a less strict 
comparison, matching the 62 "normal" Sami-Trop records 
against 63 records from PTB-XL with the general code 
"NORM," which could include minor variations like sinus 
tachycardia or bradycardia. The third, SET C, served as 
an external validation set, using 78 "normal" ECGs with a 
1:1 ratio of Chagas to control from the CODE-15 dataset. 

For preprocessing, the raw single-lead ECG signal was 
processed to identify R-peaks using the well-established 
Pan-Tompkins algorithm. The resulting sequence of RR 
intervals was then filtered to remove outliers and retain 
only normal-to-normal sinus beat intervals for robust 
feature calculation. 

In the case of inference on the CNN model, records 
shorter and 7 seconds were padded, while longer records 
were truncated. For the feature models, any record with 
less than 6 detected RR intervals was deemed negative by 
default. 

 
2.3. Rhythm Analysis 

A comprehensive set of 31 features was engineered 
from the preprocessed 10-second ECG signals to capture 
a wide range of cardiac dynamics. These were divided 
into two main categories. The first category consisted of 
24 RR interval features focused on quantifying heart rate 
variability (HRV). These included standard time-domain 
statistical measures such as the mean and median of RR 
intervals, heart rate (HR), SDNN, RMSSD, pNN20, and 
pNN50. Geometric features were also derived from the 
Poincaré plot, including the standard deviations along the 
short (SD1) and long (SD2) axes and their ratio, 

alongside histogram-based features like the Triangular 
Index (TI) and the Baevsky Stress Index (BSI). Finally, 
non-linear measures of signal complexity were computed 
to capture subtle irregularities, including the correlation 
dimension, RR entropy (RREN), SD entropy, RR wavelet 
entropy (RRWEN), and SD wavelet entropy. The second 
category comprised 7 QRS amplitude features to capture 
morphological changes in the QRS complex. These 
included the mean, median, standard deviation, and 
entropy of the QRS peak amplitudes, as well as the 
minimum, maximum, and range (gap) of amplitudes 
within the 10-second window. 
 
2.4. Models 

Three distinct modeling strategies were pursued to find 
an optimal balance between performance and 
generalizability.  

The first was a lightweight 1D Convolutional Neural 
Network (CNN) trained on the raw ECG waveform as an 
end-to-end model. This model was trained using the 
Adam optimizer with a cosine learning rate scheduler 
with soft restarts, an initial learning rate of 1e-2, and a 
final learning rate of 1e-5, for a maximum of 140 epochs.  

The second and third strategies involved traditional 
machine learning classifiers trained on the engineered 
features. For both feature-based models, the input features 
were first standardised to have a zero mean and a 
standard deviation of one.  

The RR Model was a K-Nearest Neighbors (KNN) 
classifier with 100 neighbors considered, using only the 
R-R interval features.  

The third and most comprehensive approach, the 
RR+AMP Model, was a random subspace ensemble 
model composed of discriminant analysis learners; this 
model used both the R-R interval and the ECG QRS 
complex amplitude features. This ensemble used a 
subspace size of 16 predictors and was trained for 30 
learning cycles. 

 
2.4. Evaluation 

The evaluation protocol was multi-faceted. Initial 
model development and hyperparameter tuning were 
performed using a 5-fold cross-validation scheme on the 
primary training data. To assess generalization to unseen 
data, the trained models were then evaluated on the 
external CODE-15 dataset. Finally, performance was 
reported on a hidden test set as part of the official 
PhysioNet Challenge, providing an unbiased assessment 
of the final models. The statistical significance of each 
engineered feature was independently assessed using the 
Kruskal-Wallis test using the local training and evaluation 
sets. Models trained for the additional analysis on 
“normal” ECGs were only evaluated using cross-
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validation. 
 

3. Results 

3.1. Model Performance 

The performance of the three models is summarised in 
Table 1. The CNN model achieved a high cross-
validation AUC of 0.9359 but performed poorly on local 
validation set of CODE-15 with an AUC of 0.3557, 
indicating significant overfitting. In contrast, the feature-
based models generalised better. The RR+AMP model 
yielded the highest cross-validation AUC of 0.7220, 
demonstrating a modest improvement over the RR-only 
model which had a cross-validation AUC of 0.6827. 
When validated locally using the CODE-15 set, the 
RR+AMP model had an AUC of 0.6867 and the RR 
model an AUC of 0.6900, showing a consistent 
performance across different datasets. 

 
Table 1. Results of each model on local testing. 
 

Model Training data 
cross-validation 
AUC 

CODE-15 
validation 

CNN  0.9359 0.3557 
RR 0.6827 0.6900 
RR+AMP 0.7220 0.6867 

 
For the testing on the hidden tsets, the CNN model was 

submitted during the main phase of the challenge, while 
the feature models were both submitted for the Hackathon 
during the conference. As a result, which was feature was 
eventually evaluated is unknown. The CNN model 
achieved a mean challenge score of 0.056 and the feature 
model a mean challenge score of 0.078. 

 
Table 2. Results of each model on the hidden sets. 
 

Model Hidden 
validation 
challenge score 

Hidden test 
mean challenge 
score 

CNN  0.101 0.056 
Feature 0.062 0.078 

 

3.2. Analysis on Normal ECGs 

The analysis restricted to clinically "normal" ECGs 
also identified highly significant features, suggesting that 
subtle autonomic dysregulation is detectable even without 
overt abnormalities. For SET A (strictly normal 
controls), SDNN(p=3.46×10−8) and Poincaré long 
diagonal st.d. (p=3.85×10−8) were the most powerful 

discriminators.  
A simple model trained on SET A achieved an AUC of 

0.8119, with 80.6% specificity and 74.2% sensitivity, 
highlighting a strong potential for early detection. 
Performance decreased on SET B (AUC 0.6897) and SET 
C (AUC 0.6127), where control groups were less 
stringently defined or sourced from a different dataset, 
respectively. 

 
Table 3. Normal ECG model evaluation 
 
Dataset Training data 

cross-validation 
AUC 

SET A  0.8119 
SET B 0.6897 
SET C 0.6127 
 
 
4  Discussion 

This study demonstrates the potential of using machine 
learning models on features from short, single-lead ECGs 
to detect Chagas disease. Our findings indicate that 
feature-engineered models, particularly the RR+AMP 
model, provide a more robust and generalizable 
performance compared to our end-to-end CNN deep 
learning approach. Biases in the data and the lack of data 
cleansing, could be the cause for the poor performance of 
the CNN model on the hidden sets. For the feature 
models, the fact that they cannot process records with too 
few RR intervals, might have contributed to the model’s 
low performance. 

The most significant finding is the ability to 
discriminate between Chagas and healthy individuals 
even when their ECGs are classified as "normal". The 
high performance of a model on SET A (AUC 0.8119) 
suggests that subtle disruptions in cardiac autonomic 
control, captured by HRV metrics like SDNN and 
Poincaré plot analysis, precede the development of 
clinically apparent ECG abnormalities. This aligns with 
the known pathophysiology of Chagas disease, where 
autonomic nervous system damage is an early 
manifestation. This capability is crucial for early-stage 
screening, allowing for timely intervention before 
irreversible cardiac damage occurs. A limitation of this 
approach is that such a model might confuse other 
diseases that affect HRV for Chagas disease. 

The primary limitation of this work is the use of short 
ECG recordings, which is suboptimal for stable HRV 
feature calculation. Standard HRV analysis typically 
requires recordings of at least 30 seconds. The instability 
of features derived from short segments may have 
constrained the overall model performance. 

In conclusion, this research provides strong evidence 
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that accessible, single-lead ECG analysis can be a 
powerful tool for Chagas disease screening. By 
leveraging computational analysis of RR intervals and 
QRS amplitude, it is possible to detect subtle pathological 
signs that may be missed by routine interpretation. As 
technology for heart rhythm monitoring becomes 
ubiquitous through smartphones and wearables, this 
approach has the potential to significantly improve access 
to care and enable large-scale screening efforts in at-risk 
populations.  

Future work should focus on validating these methods 
on longer recordings (e.g., 20-30 seconds) to enhance 
feature stability and further improve model accuracy. 
Additionally, an important investigation will be to 
compare the ability of these features to discriminate 
Chagas disease with no ECG findings from other diseases 
that may also affect the autonomic nervous system and 
thus HRV. 
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